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Correlation functions in the Calogero–Sutherland model
with open boundaries?
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Abstract. Calogero-Sutherland models of type BCN are known to be relevant to the physics of one-
dimensional quantum impurity effects. Here we represent certain correlation functions of these models in
terms of generalized hypergeometric functions. Their asymptotic behaviour supports the predictions of
(boundary) conformal field theory for the orthogonality catastrophy and Friedel oscillations.

PACS. 05.70.Jk Critical point phenomena – 71.10.Pm Fermions in reduced dimensions (anyons, composite
fermions, Luttinger liquid, etc.) – 72.10.Fk Scattering by point defects, dislocations, surfaces, and other
imperfections (including Kondo effect)

1 Introduction

One-dimensional models with inverse square interactions
have attracted considerable interest in recent years. For
the Calogero Sutherland (CS) models [1–3] describing par-
ticles moving on a continuous line the many-body ground
state wave function is of Jastrow type and excitations can
be written as a product of this pair product wave func-
tion and certain polynomials in the coordinates. Based on
this observation the eigenvalues of the Hamiltonian can
be found by means of an asymptotic Bethe Ansatz (ABA)
solution [2]. Finite-size scaling analysis of the excitation
spectrum and predictions of conformal field theory (CFT)
have been used to study the critical behaviour of the CS
model, leading to the identification of the universality
class of the model with periodic boundary conditions as
Luttinger liquid, i.e. a Gaussian model with central charge
c = 1 [4,5]. An interesting property of th CS models is that
the compact form of the eigenstates allows for an explicit
calculation of certain correlation functions [6–9], thus al-
lowing to compare the asymptotic predictions of CFT to
exact expressions derived in a microscopic model.

In addition to the models with periodic boundary con-
ditions there exists a class of CS models lacking transla-
tional invariance, in particular the model of BCN -type
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which is invariant under the action of the Weyl group
of type BN [3]. Again the ground state can be written
in a compact form of Jastrow type, and the spectrum of
excitations can be found [10, 11]. An analysis of the fi-
nite size corrections to the energies shows that the spec-
trum acquires contributions due to the “boundaries” of
the system and the low-energy critical behaviour is de-
scribed by a c = 1 boundary CFT [12]. Again, the exis-
tence of a “simple” expression for the ground state wave
function opens the possibility to compare the predictions
of boundary CFT for the asymptotic behaviour of correla-
tion functions with exact results. These predictions are of
great interest at present due to the possibility to extract
observable properties of quantum impurity systems from
finite size spectra (see e.g. [13–15]).

In the present paper we shall consider the BCN -type
CS model and compute matrix elements which allow to
compare the exponents associated with the Anderson’s
“orthogonality catastrophy”, i.e. the dependence of the
overlap between ground states for different boundary con-
ditions on the system size, and the asymptotic behaviour
of (Friedel) density oscillations due to the existence of the
boundary with the corresponding expressions for the Lut-
tinger liquid [14–20].

First we will give a brief review of the properties of
the CS model of BCN -type as well as the predictions of
boundary CFT relevant to the results of this paper. A
form of the Hamiltonian in a finite geometry especially
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convenient for our studies is [12]
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Here λ, µ, ν are positive coupling constants. The parti-
cles move on the interval 0 ≤ qj ≤ L. The two particle
interaction terms consist of the usual inverse square inter-
action of particles moving on one half of the circle with
circumfence 2L plus a term from the interaction of the
particle at qj with the mirror image −qk ≡ 2L − qk of
the particle at qk. The last two terms can be regarded as
impurity potentials situated at the edges q = 0 (q = L) of
the system with strength given by µ (ν). Eigenvalues and
eigenstates of (1) have been determined explicitely [10,11],
the many-particle ground state wavefunction is [3]
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As for the periodic CS models the spectrum can be repro-
duced exactly by means of the asymptotic Bethe Ansatz
method [10]. Expanding the ground state energy in inverse
powers of the system size the following finite size scaling
form is found [12]

E
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2πvF
L

λ
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where ε(0) and f are the bulk energy density and the
boundary energy in the thermodynamic limit for fixed
particle density n = N/L, respectively. vF = 2πλn is
the Fermi velocity of the elementary excitations. Similarly,
the energy of an excited state with ∆N additional parti-
cles and Nph > 0 particle-hole excitations near the Fermi
point is, to leading order in 1/L,
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Here we have absorbed a term µ
(0)
c ∆N into the definition

of the energy the system with µ
(0)
c = L∂ε(0)/∂N being the

chemical potential.

The expressions (3, 4) should be compared with the
corresponding prediction of CFT for models with free
boundary conditions, namely

E(x) = Lε(0) + 2f −
πvF

24L
c+

πvF

L
x (5)

with the Virasoro central charge c appearing in the uni-
versal amplitude of the 1/L-term and the critical expo-
nent x of the operator generating this state. It is well
known that the long-range nature of the interactions in
CS models gives rise to non-universal 1/L-contributions
to the ground state energy of these systems [5, 12]. The
λ-dependence in the last term in (3) is believed to be a
consequence of this effect, thus yealding an incorrect value
for the central charge.

The other contribution of order 1/L to the ground
state energy is a consequence of the scattering due to the
free boundary and the impurity potentials. If one applies
boundary CFT to obtain the surface critical exponents
controlling the asymptotic behaviour of correlation func-
tions one has to distinguish operators connecting states
corresponding to different boundary conditions and oper-
ators inducing a change of particle number or particle-hole
excitations in the ground state corresponding to a given
boundary condition [14,15]. For the latter case the phase
shift ∆Nb should be absorbed into the the change of the
number of particles

Ẽ
(0)
N = E

(0)
N −

2πvF
L

λ

4
(∆Nb)

2
,

∆̂N = ∆N +∆Nb (6)

to restore particle hole symmetry of the finite size spec-
trum (4). The resulting scaling dimension of an operator
φ corresponding to this situation is

x(φ) =
L

πvF

(
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λ

2
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with integer ∆̂N .
To obtain the conformal dimension of boundary condi-

tion changing operators finite size energies corresponding
to states subject to different boundary conditions have to
be compared [14,15,17]. Consequently, only one of the two
phase shifts ∆Nb, ∆Nb′ arising in these expressions can
be absorbed into a shift of the particle number as in (6).
For the operator ψbb′ connecting the gound states corre-
sponding to different boundary conditions this leads to an
operator dimension

x(ψbb′) =
λ

2
(∆Nb −∆Nb′)

2
. (8)

This exponent determines the orthogonality exponent
〈0b|0b′〉 ∝ L−x and the related X-ray edge singularity
arising from a sudden change of the boundary poten-
tial [14, 15,17,21].

The asymptotic behaviour of correlation functions in
the bulk is still determined by the conformal dimension of
the corresponding operator. In fact, an n-point function
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of the semiinfinite system is subject to different bound-
ary conditions but obeys the same differential equation
as the 2n-point function including the mirror positions in
the system without boundary [22]. Hence, the critical ex-
ponent for the asymptotic behaviour of the single particle
density 〈ρ(q)〉 due to the presence of the boundary can
be obtained from the density density correlation function
for the corresponding system without a boundary, namely
the periodic CS model. The most dominant term is due
to backscattering processes with momentum ±2kF ≡ 2πn
and decays asymptotically as [5]:

〈ρ(q)〉 − n ∼
cos(2kF q)

q1/λ
· (9)

2 Overlap integrals

To compute the overlap integral between ground states
of (1) corresponding to different values of the boundary
field stengths µ, ν we will make use their representation
in terms of so called Selberg correlation integrals (see [6]
and references therein)
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For m = 0 the integrals can be evaluated with result ex-
pressed in terms of Gamma-functions
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We first note that the normalization integral of (2)
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Now the overlap between two states (2) for different sets
of boundary fields (µ, ν) and (µ′, ν′) can be expressed as
the ratio of Selberg correlation integrals
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For large system size L and fixed density ρ = N/L the
overlap integral (16) is determined by the logarithmic
divergence of the first two contributions to the sum at
j = N − 1 giving

ln |〈µ, ν|µ′, ν′〉| ∝
1

8λ

(
(µ− µ′)2 + (ν − ν′)2

)
lnL (18)

which is in perfect agreement with (3) and the prediction
(8) of boundary CFT (note that the operator connect-
ing |µ, ν〉 and |µ′, ν′〉 in this situation is a product of two
boundary changing operators ψµµ′ and ψνν′ acting at the
boundary at q = 0 and q = L, respectively [17]).

3 Friedel oscillations

We consider now a spatial dependence for single particle
density

〈ρ(q)〉 =
1
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×
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For integer values λ the function 〈ρ(q)〉 can be expressed
in terms of the Selberg integrals (10)
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Fig. 1. Single particle density oscillations for a system of N =
10 particles with λ = 2, µ = 3 and ν = 1.

where m = 2λ and x1 = . . . = xm = x = sin2(πq/2L).
Equation (20) can be rewritten as

〈ρ(q)〉 =
2π

L
xµ(1− x)ν

×
SN−1,0(µ+ 1
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2 , 2λ)
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2
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where 2F
(λ)
1 is a generalized hypergeometric function of

m variables (see [6]). For finite systems this expression for
the single particle density can be evaluated by using the

fact that 2F
(λ)
1 for equal arguments can be written in tems

of Jack symmetric polynomials [23]. In Figure 1 we have
plotted (21) in this representation for a system of N = 10
particles.

In the thermodynamic limit we derive the asymptotic
behavior of 〈ρ(q)〉 for 1 � q � N using the integral rep-
resentation [7]
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Omitting the x-independent factor we find from (21)
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where n̄ = N − 1. Near the boundary q � 1 we obtain

〈ρ(q)〉 ∝ q2µ. (24)

For 1 � q � N we have x = sin2(πq/2L) → g2/n̄2,
g = kF q/2. After rescaling tl → n̄tl and using the identity
limn→∞ (1 + y/n)

n
= exp y we obtain from (23)

〈ρ(q)〉 ∝ q2µ
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In order to calculate this divergent integral we analyti-
cally continue it to imaginary g and obtain after rescaling
t→ t/g
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×
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×
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Now equation (26) can be easy evaluated in the limit
q � L/N which corresponds to g � 1. Considering the
case m = 2 first we find after an integration near the
extremum point tj = 1

〈ρ(q)〉 ∝
cos 2kF q

q1/λ
· (27)

In the general case the main oscillating term is obtained
by integration (26) over an region where only two variables
are near extremum points. Then the integration over these
two variables gives rise to a factor

cos 2kF q

q1/λ+1

while the other integrals of type
∏∫

e−gtf(t) contribute
a factor of order (1/g)m−2. Substituting to equation (26)
we reproduce the result (27) for any value of the coupling
constant λ. Again, this result is in complete agreement
with the boundary CFT prediction (9).

4 Free fermionic case

Note that in the free fermionic case λ = 1 the Friedel
oscillations can be investigated in more detail due to a
possibility to express the Selberg integral Sn,2 in terms of
Appell’s hypergeometric function F4 [6]

Sn,2(λ1, λ2, λ;x1, x2) = (−1)nSn,0(λ1 + 1, λ2 + 1, λ)

× F4(a, b, c− 1, c2; (1− x1)(1− x2)), (28)

where

a = −n, b =
2

λ
(λ1 + λ2 + 1) + n− 1,

c1 =
2λ1

λ
, c2 =

2λ2

λ
· (29)
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Substituting (28) to equation (20) we find

〈ρ(q)〉 ∝ xµ(1− x)ν

× F4(−n̄, µ+ ν + 1 + n̄, µ+
1

2
, ν +

1

2
, x2, (1− x)2),

(30)

where x = sin2(kF q/2N) as before. The Appell function
F4(α, β, γ1, γ2, x, y) satisfies the following system of equa-
tions

x(1− x)Z ′′xx − y
2Z ′′yy − 2xyZ ′′xy

+ [γ1 − (α+ β + 1)x]Z ′x − (α+ β + 1)yZ ′y − αβZ = 0,

(31)

y(1− y)Z ′′yy − x
2Z ′′xx − 2xyZ ′′xy

+ [γ2 − (α+ β + 1)y]Z ′y − (α+ β + 1)xZ ′x − αβZ = 0.

In the limit q � N we obtain after simple manipulations

〈ρ(q)〉 ∝ Z(u, v)|u=2q2,v=0, (32)

where Z(u, v) is the solution of equations

Z ′′uv =
µ(µ− 1)Z

(u+ v)2
,

(33)

2uZ ′′uu − 2vZ ′′vv − 2(u− v)Z ′′uv + 3Z ′v + k2
FZ = 0.

For u� 1 in the first order variables u and v are separated
each from other. We have as a result

〈ρ(q)〉 ∝ n+
1

q1/2
Zδ(2kF q), (34)

where Zδ is the Bessel function and

δ =
√

1/4 + 8µ(µ− 1).

The asymptotic behavior of (34) is in agreement with gen-
eral result (27).

5 Summary and conclusion

We have studied the asymptotic behaviour of the overlap
integral between ground states of the BCN type Calogero
Sutherland model corresponding to different strenghts of
the boundary fields and the Friedel oscillations of the sin-
gle particle density due to the presence of a boundary. Our
results are in agreement with those obtained by applying

the predictions of boundary conformal field theory to the
finite size spectra of these systems. In particular, it has
been established that non universal exponents showing
a continuous dependence on the values of the boundary
fields can arise in the correlation functions of boundary
changing operators.
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